Discovering Customer Journey Maps using a Mixture of Markov Models
نویسندگان
چکیده
Customer Journey Maps (CJMs) summarize the behavior of customers by displaying the most common sequences of steps they take when engaging with a company or product. In many practical applications, the challenge lies in automatically discovering these prototypical sequences from raw event logs for thousands of customers. We propose a novel, probabilistic approach based on a mixture of Markov models and show it can reliably extract CJMs with just one input parameter (and potentially none).
منابع مشابه
Introducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملUsing Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior
In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملDiscovering video structure using the pseudosemantic trace
In this paper we describe a framework of analyzing programs belonging to different TV program genres using Hidden Markov Models and pseudo-semantic features derived from video shots. Clustering using Gaussian mixture models is used to determine the order of the models. Results for initial genre classification experiments using two simple features derived from video shots are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017